ALGEBRA

List 7.
Eigenvalues and eigenvectors. Diagonalization and the Jordan normal form of a matrix

1. Determine the real eigenvalues and eigenvectors of the following matrices:

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right), \quad\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & -1 & -2 \\
0 & 2 & 2 \\
0 & -1 & -1
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) .
$$

2. Find the complex eigenvalues and eigenvectors of the following matrices:

$$
\left(\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right), \quad\left(\begin{array}{cc}
1 & -4 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 2 & 0 \\
-1 & 3 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

3. Find the eigenvalues and eigenvectors of the following linear mappings:
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where $T(x, y)=(x-2 y, x+y)$;
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where $T(x, y, z)=(2 z, x, y)$;
(c) $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$, where $T(x, y, z)=(2 z, x, y)$;
(d) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where $T(x, y, z)=(2 x+y, y-z, z)$.

In each of the above cases, answer whether the mapping has an eigenbasis.
4. For the matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & -1 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) check if the matrix is diagonalizable;
(c) give geometric interpretation for the linear transformation given by this matrix
(d) calculate A^{10}, e^{A}.
5. For the matrix

$$
A=\left(\begin{array}{rrr}
-4 & 6 & -10 \\
-1 & 1 & -2 \\
1 & -2 & 3
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) check if the matrix is diagonalizable;
(c) give geometric interpretation for the linear transformation given by this matrix
(d) calculate A^{10}, e^{A}.
6. For the matrix

$$
A=\left(\begin{array}{rrr}
3 & 1 & -1 \\
-4 & -2 & 1 \\
8 & 2 & -3
\end{array}\right)
$$

(a) determine its eigenvalues and eigenvectors;
(b) check if the matrix is diagonalizable;
(c) give geometric interpretation for the linear transformation given by this matrix
(d) calculate A^{10}, e^{A}.
7. Diagonalize the real matrices

$$
\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & 0 & -4 \\
0 & -1 & 0 \\
2 & -4 & 5
\end{array}\right), \quad\left(\begin{array}{ccc}
2 & -1 & -1 \\
3 & -2 & -3 \\
-1 & 1 & 2
\end{array}\right), \quad\left(\begin{array}{ccc}
-5 & 0 & -2 \\
4 & -1 & 2 \\
4 & 0 & 1
\end{array}\right)
$$

8. For the matrix

$$
A=\left(\begin{array}{rrr}
5 & 3 & -3 \\
-8 & -6 & 2 \\
4 & 4 & 1
\end{array}\right),
$$

(a) determine its eigenvalues and eigenvectors;
(b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
(c) explain why the matrix is not diagonizable;
(d) determine its generalized eigenvectors;
(e) write the decomposition of the matrix to the Jordan normal form.
9. For the matrix

$$
A=\left(\begin{array}{rrr}
1 & -1 & 0 \\
3 & 1 & -2 \\
3 & -1 & -1
\end{array}\right),
$$

(a) determine its eigenvalues and eigenvectors;
(b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
(d) determine its generalized eigenvectors;
(e) write the decomposition of the matrix to the Jordan normal form.
10. For the matrix

$$
A=\left(\begin{array}{rrr}
2 & 2 & -1 \\
1 & 1 & 0 \\
2 & -2 & 2
\end{array}\right),
$$

(a) determine its eigenvalues and eigenvectors;
(b) for each eigenvalue determine its algebraic multiplicity and geometric multiplicity;
(d) determine its generalized eigenvectors
(e) write the decomposition of the matrix to the Jordan normal form.

